AIR POLLUTION MONITOR
AP-370 Series
Type approved by European agencies and US.EPA
These ambient air pollution monitors are compact and easy to use, precise and reliable measurements.

Features

- **Automatic calibration**
 Troublesome calibration procedures have been reduced to the push of a function key. At the Auto-Interval Calibration (AIC) menu you can set the start time, the start range, and the interval for the automatic calibration. The system clock and calendar then assure that your calibration instructions are executed precisely. To make things even easier, remote auto-calibration can also be done from your own computer, via the monitor’s RS-232C serial port (optional).

- **Auto-range function**
 An auto-range function that automatically switches to the range best suited to the object gas concentration for both momentary and average values is included as a standard feature. As an option, even when randomly set to any range (within 10 times the range ratio), the auto-range function can still be used. Switching over from auto-range to manual-range is a simple task.

- **Selective data output**
 For each component measured, the system provides four types of data: momentary values, integrated values, moving averages, and simple averages. Any two of these may be output. Simultaneous output to any two external devices (e.g., PC, printer). The time-span for both average and integrated values may be specified (i.e., when the momentary value has not been selected). With the simple average values, three different timesettings can be specified.

- **Storing data in memory**
 Four different values may be stored in memory: three simple averages and the integrated value. For example:
 - Average value #1 (3 min) → 1,000 data sets
 - Average value #2 (30 min) → 1,000 data sets
 - Average value #3 (3 h) → 100 data sets
 - Integrated value (1 h) → 1,000 data sets

- **Ethernet(LAN) connection (option)**
 Compatible with LAN environment, data sharing and collection are available. Standard LAN environment and Ethernet access port (option) are equipped and can meet in Network environment.
Monitors are surprisingly maintain for such sensitive, measurements.

Memory card for data management (option)
Possible to connect Compact Flash (CF) CF: Able to save hour of integrated value...etc. Possible to read in data to CF card and collect data. Suitable for data processing and remote maintenance. It’s possible to conveniently utilize stand-alone.

Readout toggles to mg/m³, μg/m³
A touch of a button on the front panel is all that is needed to toggle the readout from ppm or ppb to mg/m³. (Not available on Model APHA-360, where CH₄ values are displayed as ppm, NMHC and THC as ppmC.)

Pressure-compensation
Automatic compensation for ambient pressure assures reliable data regardless of the weather or the monitor’s location.

Easy-to-read, 326 × 240 dots LCD readout display with touch panel screen.
Adoption of the touch screen of full graphic LCD. Easy-to-operate large display and user friendly, interactive type operation. Possible to save data of average value, integrated value alarm history and calibration history. Improve the maintain ability, for example, display the graph of intensity, hour meter function.

Minimal influence from interference components and ambient temperature
These monitors use Horibá’s innovative detection technology and sampling method for outstanding sensitivity. The influence from interference components is minimal and results are very stable over long periods of measurement.

Input/output via RS-232C port (option)
The systems’ RS-232C serial port can be used to transmit measured values, alarms, and other data to remote equipment. It can also be used to input changes to parameter settings and other data. A hard-copy printout of measured values can be produced by attaching a recorder to the RS-232C port.

At last—a small, compact system
A small, light-weight unit for each component to be measured fits neatly into a 19 inch rack. This makes it easy to upgrade your system for multicomponent capabilities. This new design offers great savings in valuable lab space.
The cross flow modulation type, infrared-absorption technology eliminates the need for troublesome optical adjustments. For the user, this means very stable and sensitive (5 ppm F.S.) measurements. The APMA-370 uses an AS-type interference-compensating detector, and a flowing reference gas. The reference gas is generated by purging sample through an oxidation process, where an oxidizing catalyst burns the CO to CO₂. These features eliminate the interference effect of other elements, resulting in highly accurate measurements. The APMA-370 does not use such components as reflecting mirrors, that attract foreign matter. This means the optical bench stays clean assuring you of stable results over long periods of time.

Features

The cross flow modulation type, infrared-absorption technology eliminates the need for troublesome optical adjustments. For the user, this means very stable and sensitive (5 ppm F.S.) measurements. The APMA-370 uses an AS-type interference-compensating detector, and a flowing reference gas. The reference gas is generated by purging sample through an oxidation process, where an oxidizing catalyst burns the CO to CO₂. These features eliminate the interference effect of other elements, resulting in highly accurate measurements. The APMA-370 does not use such components as reflecting mirrors, that attract foreign matter. This means the optical bench stays clean assuring you of stable results over long periods of time.

Principle

Cross flow modulation, infrared absorption technology (NDIR)

Conventional technology uses an optical chopper to obtain modulation signals. Instead of this, the APMA-370 uses a solenoid valve modulation. Fixed amounts of the sample gas and the reference gas are injected alternately into the measurement cell. With the cross flow-modulation method, if the same gas is used for both the sample gas and the reference gas (e.g., zero gas could be used for both), no modulation signal will be generated. This has the great advantage that, in principle, when analyzing minute amounts of gas there is no generation of zero-drift. An additional advantage is that the elimination of rotary sectors precludes the need for optical adjustment. These features assure greatly improved stability over long periods of measurement. A further improvement is that in the front chamber of the detector, the measurable components, including interference components, are detected; in the rear chamber, interference components only are detected. By means of subtraction processing, the actual signal obtained is one that has only very little interference influence.

Specifications

Principle: Cross flow modulation, non-dispersive infrared absorption technology (NDIR)

Application: CO in ambient air

Range: Standard ranges: 0-10/20/50/100 ppm; 0-5/10/20/50 ppm; auto range — manual range selectable; can be operated by remote switching.

Optional (measurable) ranges: 4 ranges selectable from 0-100 ppm, within 10 times range ratio; auto range — manual range selectable; can be operated by remote switching.

Lower detectable limit: 0.02 ppm (3 sigma)

Repeatability: ± 1.0% of F.S.

Linearity: ± 1.0% of F.S.

Zero drift: < LDL/day at lowest range
< 0.2 ppm/week at lowest range

Span drift: < LDL/day at lowest range
< 1.0% F.S./week

Response time (T90): Within 50 sec at lowest range

Sample gas flow rate: Approx. 1.5L/min

Indication: Measured value, range, alarm, maintenance screen

Alarms: During AIC, zero calibration error, span calibration error, temperature error in catalyzer, etc.

On-screen messages are available in four languages: English, German, French, and Japanese.

Input/output: 0-1 V/0-10 V/4-20 mA, to be specified (2 systems: either (1) momentary value and integrated or (2) moving average value) · Contact input/output · RS-232C

Ambient temperature: 5-40 ²

Power: 100/110/115/120/220/230/240 VAC, 50/60 Hz (to be specified)

Dimensions: 430(W) x 550(D) x 221(H) mm

Mass: Approx. 16 kg.
The APSA-370 uses an innovative detector and a new optical system for low background, high sensitivity (0.05 ppm F.S.), and greatly improved stability.

Fluorescent chamber design gives measurements with minimum influence from moisture.

The unit has built-in aromatic hydrocarbon cutter with a selective transmission membrane. This reduces the influence of interference components. Coupled with Horiba’s unique flow-path, it also makes it possible to extend the working life of the cutter and to take measurements free from influence from variations of sample flow.

In comparison with the FPD method, the APSA-370 design is:
1. Highly selective for SO₂,
2. Requires no supplemental gas, and

Compensation for the lamp’s luminous energy guarantees prolonged span stability.

The sample inlet has a Teflon filter built-in.

Features

The APSA-370 uses an innovative detector and a new optical system for low background, high sensitivity (0.05 ppm F.S.), and greatly improved stability.

Fluorescent chamber design gives measurements with minimum influence from moisture.

The unit has built-in aromatic hydrocarbon cutter with a selective transmission membrane. This reduces the influence of interference components. Coupled with Horiba’s unique flow-path, it also makes it possible to extend the working life of the cutter and to take measurements free from influence from variations of sample flow.

In comparison with the FPD method, the APSA-370 design is:
1. Highly selective for SO₂,
2. Requires no supplemental gas, and

Compensation for the lamp’s luminous energy guarantees prolonged span stability.

The sample inlet has a Teflon filter built-in.

Principle

UV fluorescence

The UV fluorescence method operates on the principle that when the SO₂ molecules contained in the sample gas are excited by ultraviolet radiation they emit a characteristic fluorescence in the range of 220-240 nm. This fluorescence is measured and the SO₂ concentration is obtained from changes in the intensity of the fluorescence.

The reactive mechanism is:
1. \(\text{SO}_2 + \text{h}_\text{v} \rightarrow \text{SO}_2^* \)
2. \(\text{SO}_2^* \rightarrow \text{SO}_2 + \text{h}_\text{v} \)
3. \(\text{SO}_2^* \rightarrow \text{SO}^+ (O) \)
4. \(\text{SO}_2^* + \text{M} \rightarrow \text{SO}_2 + \text{M} \)

Here, (1) shows the excited state of the SO₂ molecules that have absorbed the amount of energy \(\text{h}_\text{v} \) by ultraviolet radiation. (2) shows the amount of energy, \(\text{h}_\text{v} \), emitted by the excited molecules as they return to the ground state. (3) shows the decomposition by the light emitted from the excited molecules. (4) shows the quenching, i.e., the energy lost by the excited molecules colliding with other molecules.

The APSA-370 uses an Xe lamp as the light source, and the fluorescent chamber design minimizes scattered light. The optical system has been carefully designed with low background, making it possible to take measurements with a highly stable zero point. In addition, a reference detector monitors any fluctuation in the intensity of the light source. This allows the unit to calibrate itself automatically for sensitivity, resulting in greater span stability.

Specifications

- **Principle:** UV fluorescence (UVF)
- **Application:** SO₂ in ambient air
- **Range:** Standard ranges: 0-0.05/0.1/0.2/0.5 ppm; auto range — manual range selectable; can be operated by remote switching.
 Optional (measurable) ranges: 4 ranges selectable from 0-10 ppm, within 10 times range ratio; auto range — manual range selectable; can be operated by remote switching.
- **Lower detectable limit:** 0.5 ppb (3 sigma)
- **Repeatability:** ±1.0% of F.S.
- **Linearity:** ±1.0% of F.S.
- **Zero drift:** < LDL/day at lowest range
 < LDL/week at lowest range
- **Span drift:** < LDL/day at lowest range
 < LDL/week at lowest range
- **Response time (T90):** Within 120 sec at lowest range
- **Sample gas flow rate:** Approx. 0.7 L/min
- **Indication:** Measured value, range, alarm, maintenance screen
- **Alarms:** During AIC, zero calibration error, span calibration error, temperature error in catalyzer, etc.
- **On-screen messages are available in four languages:** English, German, French, and Japanese.
- **Input/output:** 0-1 V/0-10 V/4-20 mA, to be specified (2 systems: either (1) momentary value and integrated or (2) moving average value) • Contact input/output • RS-232C
- **Ambient temperature:** 5-40 °C
- **Power:** 100/110/115/120/220/230/240 VAC, 50/60 Hz (to be specified)
- **Dimensions:** 430(W) x 550(D) x 221(H) mm
- **Mass:** Approx. 19 kg.
The APNA-370 uses a combination of (1) the dual cross flow modulation type chemiluminescence principle and (2) the referential calculation method. This gives it the advantages of the single-detector method plus the ability to do continuous measurements of NOx, NO, and NO2. The design gives great stability and extremely high sensitivity (F.S. 0.1 ppm)

Standard equipment includes a drier unit with an automatic recycle function to provide dry ambient air as the ozone source. This makes longrun continuous measurements possible.

The detector uses a semiconductor sensor for compactness and long working life.

All the necessary features are built right into a single rack-sized unit, including a reference-gas generator, an ozone-source drier unit, an ozone decomposer, and a sampling pump. No supplemental gas is required.

Principle

Cross flow modulation type, reduced pressure chemiluminescence (CLD)

The chemiluminescence method uses the reaction of NO with O3:

\[
\text{NO} + \text{O}_3 \rightarrow \text{NO}_2 + \text{O}_2
\]

A portion of the NO2 generated as the result of this reaction becomes NO2*. As these excited molecules return to the ground state, chemiluminescence is generated in the range of 600 nm to 3,000 nm. The light intensity is in proportion to the concentration of NO molecules and by measuring it we obtain the NO concentration of the sample. A deoxidation converter changes the NO2 to NO, which is measured. In other words, the NO2 concentration can be obtained by the difference between (1) the NOx concentration measured when the sample gas is directed through a converter and (2) the NO concentration measured when the gas is not run through the converter.

Specifications

Principle: Cross flow modulation type, reduced pressure chemiluminescence (CLD)
Application: NOx, NO and NO in ambient air
Range: Standard ranges: 0-0.1/0.2/0.5/1.0 ppm; auto range — manual range selectable; can be operated by remote switching.
Optional (measurable) ranges: 4 ranges selectable from 0-10 ppm, within 10 times range ratio; auto range — manual range selectable; can be operated by remote switching.

Lower detectable limit: 0.5 ppb (3 sigma)
Repeatability: ± 1.0% of F.S.
Linearity: ± 1.0% of F.S.
Zero drift: < 1.0 ppb/day at lowest range
1.0 ppb/week at lowest range
Span drift: < 1.0 ppb/day at lowest range
1.5 % of F.S./week

Response time (T90): Within 90 sec at lowest range
Sample gas flow rate: Approx. 0.8L/min
Indication: Measured value, range, alarm, maintenance screen
Alarms: During AIC, zero calibration error, span calibration error, temperature error in converter, etc.
On-screen messages are available in four languages: English, German, French, and Japanese.
Input/output: 0-1 V/0-10 V/4-20 mA, to be specified (2 systems: either (1) momentary value and integrated or (2) moving average value)
Contact input/output
RS-232C

Ambient temperature: 5-40°C
Power: 100/110/115/120/220/230/240 VAC, 50/60 Hz (to be specified)
Dimensions: 430(W) x 550(D) x 221(H) mm
Mass: Approx. 21 kg.

According to EN14211 and VDI 4202/4203 (TUEV Rheinland, Germany)
U. S. EPA CONDUCTING FINAL REVIEW OF DESIGNATION NUMBER APPLICATION
F e a t u r e s

The APHA-370 uses a combination of (1) the flame ionization detection method (2) and selective-combustion. This gives it the advantages of the single-detector method plus the ability to do continuous, zero-drift free measurements of THC, NMHC, and CH₄. The design gives great stability and high sensitivity (F.S. 5 ppm).

The APHA-370 has a relative sensitivity correction function for CH₄ and NMHC.

A catalytic unit for generating reference gas and auxiliary combustion air is standard equipment in the APHA-370.

All the necessary features are built right into a single rack-sized instrument, including a catalytic unit for selective combustion (i.e., an NMHC cutter); a catalytic unit for generating reference gas and auxiliary combustion air; and a sampling pump. The only supplemental gas required is H₂.

P r i n c i p l e

Flame ionization detection method (FID) with selective combustion

The flame ionization detection method (FID) is used in combination with the selective-combustion system to utilize the ionization that occurs as a result of the high-temperature energy from combustion at the tip of the burner jet when organic carbon compounds are introduced into the hydrogen flame. The hydrogen flame is located between two electrodes.

When an electrical voltage is applied across these electrodes a minute ion current proportional to the hydrocarbon concentration is produced. This current is monitored by a low leakage amplifier, giving a voltage readout for THC. To measure CH₄, the sample gas is passed through the selective catalytic combustion unit (the NMHC cutter), which oxidizes NMHC without oxidizing CH₄. This is shown as A below. B represents the THC concentration measured without passing the gas through the NMHC cutter. Thus B - A will give the concentration of NMHC. The final concentration value is calculated using a relative-sensitivity correction coefficient, k, as shown below.

CH₄ Concentration A
NMHC Concentration k (B - A)
THC Concentration A + k (B - A)

S p e c i f i c a t i o n s

Principle: Flame ionization detection (FID) with selective combustion

Application: THC, NMHC, and CH₄ in ambient air

Range:
- Standard ranges: 0-5/10/20/50 ppmC; auto range — manual range selectable; can be operated by remote switching.
- Optional (measurable) ranges: 4 ranges selectable from 0-100 ppmC, within 10 times range ratio; auto range — manual range selectable; can be operated by remote switching.

Lower detectable limit: 0.022 ppmC (3 sigma)

Repeatability: 1.0% of F.S.

Linearity: 1.0% of F.S.

Zero drift:
- 0.05 ppmC/week at lowest range
- 0.5 % F.S./week

Span drift:
- 0.05 ppmC/week at lowest range
- 0.5 % F.S./week

Response time (T₉₀): Within 60 sec at lowest range

Sample gas flow rate: Approx. 0.9 L/min

Indication: Measured value, range, alarm, maintenance screen

Alarms: During AIC, zero calibration error, span calibration error, temperature error in zero gas purifier, ignition failure error, etc.

On-screen messages are available in four languages: English, German, French, and Japanese.

Input/output:
- 0-1 V/0-10 V/4-20 mA, to be specified (2 systems: either (1) momentary value and integrated or (2) moving average value)
- Contact input/output · RS-232C

Ambient temperature: 5-40 °C

Power: 100/110/115/120/230/240 VAC, 50/60 Hz (to be specified)

Dimensions: 430(W) x 550(D) x 221(H) mm

Mass: Approx. 33 kg.

Notes: ppmC is shown as symbol, not as unit.
The APOA-370 uses the cross flow modulation type, ultra-violet absorption method in conjunction with the comparative calculation method. This permits continuous measurement with great stability and high sensitivity (F.S. 0.1 ppm).

Horiba’s innovative heated deozonizer provides reference gas by decomposing the O₃ found in the sample gas. This has the advantages of (1) reducing the influence from interference, (2) making the monitor insensitive to great changes in moisture content, and (3) prolonging the working life of the monitor.

All gas connections are either Teflon or glass.

Features

The APOA-370 uses the cross flow modulation type, ultra-violet absorption method in conjunction with the comparative calculation method. This permits continuous measurement with great stability and high sensitivity (F.S. 0.1 ppm).

Horiba’s innovative heated deozonizer provides reference gas by decomposing the O₃ found in the sample gas. This has the advantages of (1) reducing the influence from interference, (2) making the monitor insensitive to great changes in moisture content, and (3) prolonging the working life of the monitor.

All gas connections are either Teflon or glass.

Principle

Ultra-violet-absorption method (NDUV)

The ultra-violet-absorption method works on the principle that ozone absorbs ultra-violet rays in the area of 254 nm. Measurements are taken from continuous, alternate injections of the sample gas and the reference gas into the measurement cell, controlled by a long-life solenoid valve. The cross flow modulation method is characteristically zero drift-free. All fluctuations in the mercury-vapor light source and in the detector are automatically compensated for by a comparative calculation circuit. This means that, in principle, the APOA-370 makes it possible to carry out zero-span drift-free, continuous measurements. In addition, HORIBA’S unique de-ozonizer for the comparison gas line is unaffected by interference elements or moisture retention, prolonged, stable measurement is possible.

Specifications

Principle: Ultra-violet-absorption method (NDUV)

Application: O₃ in ambient air

Range: Standard ranges: 0-0.1/0.2/0.5/1.0 ppm; auto range — manual range selectable; can be operated by remote switching.

Optional (measurable) ranges: 4 ranges selectable from 0-10 ppm, within 10 times range ratio; auto range — manual range selectable; can be operated by remote switching.

Lower detectable limit: 0.5 ppb (3 sigma)

Repeatability: 1.0% of F.S.

Linearity: 1.0% of F.S.

Zero drift: < 0.01% day at lowest range

< 0.01% week at lowest range

Span drift: < 0.01% day at lowest range

< 0.01% week at lowest range

Response time (T₉₀): Within 75 sec at lowest range

Sample gas flow rate: Approx. 0.7 L/min

Indication: Measured value, range, alarm, maintenance screen

Alarms: During AIC, zero calibration error, span calibration error, temperature error in ozone separator, light intensity error, etc.

On-screen messages are available in four languages: English, German, French, and Japanese.

Input/output: 0-1 V/0-10 V/4-20 mA, to be specified (2 systems: either (1) momentary value and integrated or (2) moving average value) · Contact input/output · RS-232C

Ambient temperature: 5-40 °C

Power: 100/110/115/120/220/230/240 VAC, 50/60 Hz (to be specified)

Dimensions: 430(W) x 550(D) x 221(H) mm

Mass: Approx. 20 kg.
H2S/TRS Measurement

Features - Principle
Combined use of the H2S converter unit and the APSA: SO₂ Monitor makes H2S measurement possible. The H2S converter unit contains two types of catalyst: SOx scrubber and H2S converter. SOx is removed by the SOx scrubber, and then the H2S that has passed through is converted into SO₂ by the H2S converter. This SO₂ is then measured by the APSA: SO₂ Monitor for display as H₂S concentration.

Specifications
- **Range:** 0.1-0.1/0.2/0.5/1.0 ppm
- **Power:** 100/110/115/120/220/230/240 VAC, 50/60 Hz
- **Dimensions:**
 - CU-1: 430(W) x 550(D) x 221(H) mm
 - APSA: 430(W) x 550(D) x 221(H) mm
- **Mass:**
 - CU-1: Approx. 10 kg
 - APSA: Approx. 25 kg

Calibration Equipment

HORIBA offers various calibration products for optional use with the AP-370. HORIBA’s calibration equipment support mainly the following methods:

<table>
<thead>
<tr>
<th>Option</th>
<th>APMA</th>
<th>APSA</th>
<th>APNA</th>
<th>APHA</th>
<th>APHA Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internal or external permeation device for SO₂, H₂S, BTX, NO₂ and many more</td>
<td>☑</td>
<td>☑</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>External gas phase titration for NO/NO₂</td>
<td></td>
<td>☑</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ozone generation with an internal or external O3 generator based on UV radiation</td>
<td></td>
<td>☑</td>
<td></td>
<td></td>
<td>☑</td>
</tr>
</tbody>
</table>

All calibrators can be equipped with thermal mass flow controllers or pressure regulators and capillaries depending on the precision requirements and available budgets. Stationary and portable single components as well as multi-component calibrators are available upon client’s specification. Corresponding interfaces as well as calibration and QC protocols can also be supplied.

NH₃ Measurement

Features - Principle
Combined use of the NH₃ converter unit and the APNA: NOx Monitor makes NH₃ measurement possible. The NH₃ converter unit contains two types of catalyst tubes: one which converts NH₃ into NOx, and one which allows the NOx to pass through the ambient air directly. The difference in NOx value between the two is measured by the APNA: NOx Monitor for display as NH₃ concentration.

Specifications
- **Range:** 0-1/0.5/1 ppm
- **Power:** 100/110/115/120/220/230/240 VAC, 50/60 Hz
- **Dimensions:**
 - CU-2: 430(W) x 550(D) x 310(H) mm
 - APNA: 430(W) x 550(D) x 221(H) mm
- **Mass:**
 - CU-2: Approx. 20 kg
 - APNA: Approx. 26 kg

Digital Calibrator

Features
HORIBA’s MCC-1000 is designed to calibrate gas analyzers manually, remotely controlled or automatically, installed in air pollution monitoring stations, for quality assurance in the laboratory and also for the production of gas analyzers.

A special feature of HORIBA’s MCC-1000 is the big size touch screen panel, for ease of operation. Characteristic of operation of HORIBA’s MCC-1000 is the intuitive, simple and user friendly menu. (Flow rate, mg/m³, ppb/ppm, automatic cycles etc.) Via the touch screen it is e.g. possible to enter span gas concentrations or to start automatic routines like multi point calibration cycles.

Specifications
- **Principle:** Dynamic generation of zero-and span-gas with mfc’s
- **Mass- Flow-Controller(MFC):** With polynomial calibration
- **Power:** 230 VAC, 50 Hz (other on request), 50 VA
- **Dimensions:** 430(W) x 400(D) x 120(H) mm (19") with brackets
- **Mass:** Approx. 10 kg
Intelligent Data Acquisition System

HORIBA IDA-2000
HORIBA’s IDA-2000 is an intelligent data acquisition system (DAS) using a desktop or industrial PC, designed for fully automatic monitoring stations. The entire data capture and mean value calculation as well as control of the analyzers is executed by 32 bit multitasking software, running in a state-of-the-art Windows environment. It combines the power of a 32 bit multitasking workstation with the ease of use, compatibility and productivity of a personal computer. The measured values as well as operating and error status messages are gathered in a 5-second interval from the analyzers. They are converted into engineering units, checked for plausibility and synchronously converted into two different averages. Automatic calibration routines in predefined intervals as well as can be started either from the station computer or through a remote host computer. The DAS also supports the manual execution of calibration sequences as well as remote maintenance operations.

Data Management and Reporting Software

HORIBA IDA-ZRW
HORIBA’s IDA-ZRW is a data management and reporting software for use in Ambient Air Quality and Meteorological monitoring. The software package provides data collection, management, analysis and reporting. Measured data and related information is stored in a high-end relational SQL database. The software can be used stand-alone or run on several machines in a network environment operating in Microsoft Windows environments. Communication between Central & Remote Stations works with a wide variety of communication links, such as direct connections, short haul modems, telephone (including cellular) and multi-drop. Data can be transferred to and presented in Internet pages according to customers requirements.
Complete Integrated System

HORIBA designs, assembles, calibrates and tests complete integrated systems for simultaneously measuring multiple pollutants. A system for monitoring five pollutants can typically fit into one 19-inch rack. Rack-mounted systems can be installed in equipment rooms, stand-alone shelters, trailers, vans, large trucks, or aboard vessels. HORIBA can integrate products into existing monitoring systems, or design and build a new system.

Various Types of Fixed Stations and Mobile Laboratories

HORIBA designs and builds complete solutions precisely tailored to customer’s requirements

- Fixed monitoring stations for continuously measuring air pollutants
- Mobile laboratories to investigate the geographic distribution of air pollution

These vans and trucks are just some of the projects we’ve done for customers in Europe
Standard 19-inch Packages

Each HORIBA AP-370 Series Monitor is packaged in a light metal enclosure with sliding chassis suitable for either a table-top set-up in a research laboratory or mounting on a standard 19-inch rack for permanent installation. All the controls and serviceable components are accessible from the front for easy maintenance while the plumbing and cable connections are neatly arranged at the back.

Please read the operation manual before using this product to assure safe and proper handling of the product.

The contents of this catalog are subject to change without prior notice, and without any subsequent liability to this company.

The color of the actual products may differ from the color pictured in this catalog due to printing limitations.

Copyright ©2004, HORIBA, Ltd. All rights Reserved.